martes, 29 de enero de 2013

taller y solucion del taller








taller y solución del taller


1 .Identificar las unidades para medir: carga eléctrica, voltios, corriente, resistencia, capacitancia, velocidad angular, torque, potencia eléctrica.
Carga eléctrica: Es una propiedad intrínseca de algunas partículas subatómicas que se manifiesta mediante atracciones y repulsiones que determinan las interacciones electromagnéticas entre ellas. La materia cargada eléctricamente es influida por los campos electromagnéticos, siendo a su vez, generadora de ellos. La interacción entre carga y campo eléctrico origina una de las cuatro interacciones fundamentales: la interacción electromagnética. Desde el punto de vista del modelo estándar la carga eléctrica es una medida de la capacidad de la partícula para intercambiar fotones.
Voltios: Es la unidad derivada del Sistema Internacional para el potencial eléctrico, la fuerza electromotriz y la tensión eléctrica. Recibe su nombre en honor a Alessandro Volta, quien en 1800 inventó la pila voltaica, la primera batería química. El voltio se define como la diferencia de potencial a lo largo de un conductor cuando una corriente de un amperio utiliza un vatio de potencia.
Corriente: Es el flujo de carga por unidad de tiempo que recorre un material. Se debe al movimiento de los electrones en el interior del material. En el Sistema Internacional de Unidades se expresa en C/s (culombios sobre segundo), unidad que se denomina amperio. Una corriente eléctrica, puesto que se trata de un movimiento de cargas, produce un campo magnético, un fenómeno que puede aprovecharse en el electroimán.
Resistencia eléctrica: Resistencia eléctrica es toda oposición que encuentra la corriente a su paso por un circuito eléctrico cerrado, atenuando o frenando el libre flujo de circulación de las cargas eléctricas o electrones. Cualquier dispositivo o consumidor conectado a un circuito eléctrico representa en sí una carga, resistencia u obstáculo para la circulación de la corriente eléctrica.
Capacitancia: Es la propiedad que tienen los cuerpos para mantener una carga eléctrica. La capacitancia también es una medida de la cantidad de energía eléctrica almacenada para un potencial eléctrico dado. El dispositivo más común que almacena energía de esta forma es el condensador.
Velocidad angular: es una medida de la velocidad de rotación. Se define como el ángulo girado por una unidad de tiempo y se designa mediante la letra griega ω. Su unidad en el Sistema Internacional es el radián por segundo (rad/s). Aunque se la define para el movimiento de rotación del sólido rígido, también se la emplea en la cinemática de la partícula o punto material, especialmente cuando esta se mueve sobre una trayectoria cerrada (circular, elíptica, etc.).
Torque: Es la tendencia de una fuerza para girar un objeto alrededor de un eje,  fulcro o pivote. Al igual que una fuerza es un empuje o un tirón, un par puede ser pensado como un toque a un objeto. Matemáticamente, el par se define como el producto vectorial de la distancia de brazo de palanca y la fuerza, que tiende a producir rotación. En términos generales, el par es una medida de la fuerza de giro sobre un objeto tal como un perno o un volante de inercia. Por ejemplo, empujar o tirar del mango de una llave conectado a una tuerca o perno produce un par (fuerza de giro) que afloja o aprieta la tuerca o el tornillo.
Potencia eléctrica: es la relación de paso de energía de un flujo por unidad de tiempo; es decir, la cantidad de energía entregada o absorbida por un elemento en un tiempo determinado. La unidad en el Sistema Internacional de Unidades es el vatio (watt).
Cuando una corriente eléctrica fluye en un circuito, puede transferir energía al hacer un trabajo mecánico o termodinámico. Los dispositivos convierten la energía eléctrica de muchas maneras útiles, como calor, luz (lámpara incandescente), movimiento (motor eléctrico), sonido (altavoz) o procesos químicos. La electricidad se puede producir mecánica o químicamente por la generación de energía eléctrica, o también por la transformación de la luz en las células fotoeléctricas. Por último, se puede almacenar químicamente en baterías.
2. Describir los instrumentos para medir las magnitudes anteriores.
Corriente eléctrica: El Voltímetro como la unidad de tensión, el Ohmímetro como la unidad de resistencia y los Multimetros como unidades de medición múltiples.
Voltios: Un voltímetro es un instrumento que sirve para medir la diferencia de potencial entre dos puntos de un circuito eléctrico.
Corriente: El instrumento usado para medir la intensidad de la corriente eléctrica es el galvanómetro que, calibrado en amperios, se llama amperímetro, colocado en serie con el conductor cuya intensidad se desea medir.
Resistencia eléctrica: Ohmímetro es un instrumento para medir la resistencia eléctrica.
Capacitancia: El capacímetro es un equipo de prueba electrónico utilizado para medir la capacidad o capacitancia de los condensadores. Dependiendo de la sofisticación del equipo, puede simplemente mostrar la capacidad o también puede medir una serie de parámetros tales como las fugas, la resistencia del dieléctrico o la componente inductiva.
Velocidad angular: El uso de giróscopos es muy común ya que pueden calcular la velocidad de rotación de un móvil en relación a los ejes x, y ó z.
Torque: El torque se mide en un dinamómetro que se encuentra en talleres especializados.
Potencia eléctrica: La potencia se mide con el vatímetro. Consiste en un instrumento que te mide la corriente y el voltaje y te hace la relación entre ellas para que resulte la potencia total.




3. Describir varias clases de motores de corriente continua y su funcionamiento. Adjuntar imágenes y videos de internet.
LOS MOTORES DE CORRIENTE DIRECTA PUEDEN SER DE TRES TIPOS:
SERIE
PARALELO
COMPOUND
MOTOR SERIE: es un tipo de motor eléctrico de corriente continua en el cual el devanado de campo (campo magnético principal) se conecta en serie con la armadura. Este devanado está hecho con un alambre grueso porque tendrá que soportar la corriente total de la armadura.
Debido a esto se produce un flujo magnético proporcional a la corriente de armadura (carga del motor). Cuando el motor tiene mucha carga, el campo de serie produce un campo magnético mucho mayor, lo cual permite un esfuerzo de torsión mucho mayor. Sin embargo, la velocidad de giro varía dependiendo del tipo de carga que se tenga (sin carga o con carga completa). Estos motores desarrollan un par de arranque muy elevado y pueden acelerar cargas pesadas rápidamente.
MOTOR SHUNT O MOTOR PARALELO: es un motor de corriente continua cuyo bobinado inductor principal está conectado en derivación con el circuito formado por los bobinados inducidos e inductor auxiliar. Al igual que en las dinamos shunt, las bobinas principales están constituidas por muchas espiras y con hilo de poca sección, por lo que la resistencia del bobinado inductor principal es muy grande.
MOTOR COMPOUND: es un motor de corriente continua cuya excitación es originada por dos bobinados inductores independientes; uno dispuesto en serie con el bobinado inducido y otro conectado en derivación con el circuito formado por los bobinados inducido, inductor serie e inductor auxiliar.
Los motores compuestos tienen un campo serie sobre el tope del bobinado del campo shunt. Este campo serie, el cual consiste de pocas vueltas de un alambre grueso, es conectado en serie con la armadura y lleva la corriente de armadura.
El flujo del campo serie varia directamente a medida que la corriente de armadura varía, y es directamente proporcional a la carga. El campo serie se conecta de manera tal que su flujo se añade al flujo del campo principal shunt. Los motores compound se conectan normalmente de esta manera y se denominan como compound acumulativo.
Esto provee una característica de velocidad que no es tan "dura" o plana como la del motor shunt, ni tan "suave" como la de un motor serie. Un motor compound tiene un limitado rango de debilitamiento de campo; la debilitación del campo puede resultar en exceder la máxima velocidad segura del motor sin carga. Los motores de corriente continua compound son algunas veces utilizados donde se requiera una respuesta estable de par constante para un rango de velocidades amplio.

LAS PARTES FUNDAMENTALES DE UN MOTOR DE CORRIENTE CONTINUA SON:
ESTATOR: Es el que crea el campo magnético fijo, al que le llamamos Excitación. En los motores pequeños se consigue con imanes permanentes. Cada vez se construyen imanes más potentes, y como consecuencia aparecen en el mercado motores de excitación permanente, mayores.

ROTOR: También llamado armadura. Lleva las bobinas cuyo campo crea, junto al del estator, el par de fuerzas que le hace girar.

ESCOBILLAS: Normalmente son dos tacos de grafito que hacen contacto con las bobinas del rotor. A medida que éste gira, la conexión se conmuta entre unas y otras bobinas, y debido a ello se producen chispas que generan calor. Las escobillas se fabrican normalmente de grafito, y su nombre se debe a que los primeros motores llevaban en su lugar unos paquetes hechos con alambres de cobre dispuestos de manera que al girar el rotor "barrían", como pequeñas escobas, la superficie sobre la que tenían que hacer contacto.

COLECTOR: Los contactos entre escobillas y bobinas del rotor se llevan a cabo intercalando una corona de cobre partida en sectores. El colector consta a su vez de dos partes básicas:

DELGAS: Son los sectores circulares, aislados entre sí, que tocan con las escobillas y a su vez están soldados a los extremos de los conductores que conforman las bobinas del rotor.
MICAS: Son láminas delgadas del mismo material, intercaladas entre las delgas de manera que el conjunto forma una masa compacta y mecánicamente robusta.

EXCITACIÓN
La forma de conectar las bobinas del estator es lo que se define como tipo de excitación. Podemos distinguir entre:
INDEPENDIENTE: Los devanados del estator se conectan totalmente por separado a una fuente de corriente continua, y el motor se comporta exactamente igual que el de imanes permanentes. En las aplicaciones industriales de los motores de C.C. es la configuración más extendida.
SERIE: Consiste en conectar el devanado del estator en serie con el de la armadura. Se emplea cuando se precisa un gran par de arranque, y precisamente se utiliza en los automóviles. Los motores con este tipo de excitación se embalan en ausencia de carga mecánica. Los motores con esta configuración funcionan también con corriente alterna.
PARALELO: Estator y rotor están conectados a la misma tensión, lo que permite un perfecto control sobre la velocidad y el par.
COMPOUND: Del inglés, compuesto, significa que parte del devanado de excitación se conecta en serie, y parte en paralelo. Las corrientes de cada sección pueden ser aditivas o sustractivas respecto a la del rotor, lo que da bastante juego, pero no es este el lugar para entrar en detalles al respecto.
VIDEOS

IMÁGENES



No hay comentarios:

Publicar un comentario