miércoles, 30 de enero de 2013

SENA (instructores-maestros y otros)



Cadena de Automotriz y Transporte

LIDER DE CADENA
Juan Martin Zuleta Garzon
Oscar Muñoz

PROGRAMAS QUE OFRECE
Tecnólogo en Mantenimiento de sistemas Mecatrónicos Automotrices.
Técnico en Mantenimiento de Motores Gasolina y gas .
Técnico en Mantenimiento de Motores Diesel.
Técnico en Mantenimiento eléctrico y electrónico Automotriz. .
Técnico en Mantenimiento de sistemas de transmisión de potencia y mecanismos de seguridad.
Técnico en mantenimiento de motocicletas.
Jefe de Cadena
HECTOR ALONSO LOPEZ VALENCIA
Ingeniero de Instrumentacion y Control

Profesores de cadena
Efren Calle                     Ingeniero Mecanico Industrial
German Izasa
Juan Raul Diaz               Ingeniero Mecanico De la UdeA
Gustavo Martinez
Jorge Velez                  Ingeniero Electronico y de Control
Hugo Santana
Henry Takajashi
Albeiro Valencia     Ingeniero de Instrumentacion y Control
Jose German Tamayo
Bruno parra
Carlos Gonsales       Ingeniero Electronico, asesor de PLC
Alvaro Baldovino
Luis Angel Mejia          Tecnologo Mecatronico del SENA
Hugo Betancur
Juan Carlos Calle
Nelson Rojas
Jhon Fredy Benavidez
Jose Blanquicet
Carlos Correa
Juan Guillermo Acevedo
TEMATICAS DE APRENDIZAJE
Diseño
Electricidad
Neumatica- Electroneumatica
Hidraulica- Electrohidraulica
Electronica- Analogica y Digital
PLC
Mecanizado CNC

Cadena de Automatizacion Industrial

Jefe de Cadena
HECTOR ALONSO LOPEZ VALENCIA
Ingeniero de Instrumentacion y Control

Cadena De Formacion Sistemas de Manofactura

LIDER DE CADENA

Jorge Castro Corrales

PROGRAMAS QUE OFRECE:
Técnico profesional en Construcciones Soldadas.
Técnico en Soldadura de Mantenimiento.
Tecnólogo en mantenimiento electromecánico industrial
Tecnólogo en mantenimiento mecánico industrial
Tecnólogo en gestión de la producción industrial
Técnico profesional mantenimiento de sistemas de refrigeración y aire acondicionado domestico y comercial
Técnico en mantenimiento de equipo de refrigeración y climatización
Técnico mecánico de maquinaria industrial
Técnico en mecanizado convencional de productos metalmecánicos
Técnico en soldadura de tubería de acero al carbono
Técnico operador integral de procesos

Cadena TICS y Electronica

Jefe de Cadena
Honorio Oliveros
Ingeniero en Telecomunicaciones
PROGRAMAS QUE OFRECE:
Tecnólogo en Mantenimiento Electrónico e instrumental Industrial.
Tecnólogo de servicios de telecomunicaciones por redes cableadas.
Tecnólogo de Telecomunicaciones residenciales y corporativas.
Tecnólogo en análisis y desarrollo de sistemas de información.
Tecnólogo en administración de redes de computadores.
Técnico profesional en mantenimiento de hardware.
Técnico Profesional en instalación de redes de computadores.
Técnico en mantenimiento de computadores.


Cadena de Electricidad y Refrigeracion

Jefe de Cadena
Jonh Aloson Monsalve
Ingeniero en Electricidad y Energia alternativa
PROGRAMAS QUE OFRECE:
Tecnologia en mantenimiento electronico industria.l
Tecnologia en mantenimiento electromecanico.
Tecnico profesional en construccion y montaje de instalaciones electricas.
Tecnico profesional en reparacion y mantenimiento de sistemas de refrigeracion y aire acondicionado.
Tecnico profesional en reparacion y mantenimiento de electrodomesticos de lineas blancas.
Tecnico en instalaciones electricas en baja tension.


Misión
El Servicio Nacional de Aprendizaje, SENA, está  encargado de cumplir la función que le corresponde al Estado de invertir en el desarrollo social y técnico de los trabajadores colombianos; ofreciendo y ejecutando la formación profesional integral, para la incorporación y el desarrollo de las personas en actividades productivas que contribuyan al desarrollo social, económico y tecnológico del país.

vision


MEGA 2020 “SENA de clase mundial”
En el 2020, el SENA será una Entidad de clase mundial en formación profesional integral y en el uso y apropiación de tecnología e innovación al servicio de personas y empresas; habrá contribuido decisivamente a incrementar la competitividad de Colombia a través de:
  • Los relevantes aportes a la productividad de las empresas.
  • La contribución a la efectiva generación de empleo y la superación de la pobreza.
  • El aporte de fuerza laboral innovadora a las empresas y regiones.
  • La integralidad de sus egresados y su vocación de servicio.
  • La calidad y los estándares internacionales de su formación profesional integral.
  • La incorporación de las últimas tecnologías en las empresas y en la formación profesional integral.
  • Su estrecha relación con el sector educativo (media y superior)
  • La excelencia en la gestión de sus recursos (humanos, físicos, tecnológicos, financieros).
Himno

Nuestro himno, compuesto hace cerca de dos décadas, exalta el amor a la vida, a la patria y al trabajo.
Letra: Luis Alfredo Sarmiento
Música: Daniel Marlez

CORO
Estudiantes del SENA adelante
Por Colombia luchad con amor
Con el animo noble y radiante
Transformémosla en mundo mejor

I
De la patria el futuro destino,
en las manos del joven está,
el trabajo es seguro camino,
que el progreso a Colombia dará.

II
En la forja del SENA se forman,
hombres libres que anhelan triunfar,
con la ciencia y la técnica unidas,
nuevos rumbos de paz trazarán.

III
Hoy la patria nos grita sentida,
¡estudiantes del SENA triunfad!
solo así lograréis en la vida,
más justicia, mayor libertad.

IV
Avancemos con fuerza guerrera,
¡estudiantes con firme tesón!
que la patria en nosotros espera,
su pacífica revolución.

generador van de graaff

el generador van de graaff


El generador de Van de Graaff es una máquina electrostática que utiliza una cinta móvil para acumular cantidades de cargas eléctricas en el interior de una esfera metálica hueca. Las diferencias de potencial así alcanzadas en un generador de Van de Graaff moderno pueden llegar a alcanzar los 5 megavoltios. Las diferentes aplicaciones de esta máquina incluyen la producción de rayos xesterilización de alimentos y experimentos de física de partículas y física nuclear.



un poco de historia


Este tipo de generador eléctrico fue desarrollado inicialmente por el físico robert J. van de graaff en el MIT alrededor de 1929 para realizar experimentos en física nuclear en los que se aceleraban partículas cargadas que se hacían chocar contra blancos fijos a gran velocidad. Los resultados de las colisiones nos informan de las características de los núcleos del material que constituye el blanco. El primer modelo funcional fue exhibido en octubre de 1929 y para 1931 Van de Graaff había producido un generador capaz de alcanzar diferencias de potencial de 1 megavoltio. En la actualidad existen generadores de electricidad capaces de alcanzar diferencias de voltaje muy superiores al generador de Van de Graaff pero directamente emparentados con él. Sin embargo, en la mayor parte de los experimentos modernos en los que es necesario acelerar cargas eléctricas se utilizan aceleradores lineales con sucesivos campos de aceleración y ciclotrones. Muchos museos de ciencia están equipados con generadores de Van de Graaff por la facilidad con la que ilustra los fenómenos electrostáticos.
Robert J. Van de Graaff








Funcionamiento del generador de Van de Graaff

 

 

Hemos estudiado cualitativamente como se produce la electricidad estatica, cuando se ponen en contacto dos materiales no conductores. Ahora explicaremos como adquiere la cinta la carga que transporta hasta el terminal esférico.
graaff5.gif (3084 bytes) En primer lugar, se electrifica la superficie de la polea inferior debido a que la superficie del polea y la cinta están hechos de materiales diferentes. La cinta y la superficie del rodillo adquieren cargas iguales y de signo contrario. Sin embargo, la densidad de carga es mucho mayor en la superficie de la polea que en la cinta, ya que las cargas se extienden por una superficie mucho mayor.

graaff6.gif (2810 bytes) Si una aguja metálica se coloca cerca de la superficie de la cinta, a la altura de su eje. Se produce un intenso campo eléctrico entre la punta de la aguja y la superficie de la polea. Las moléculas de aire en el espacio entre ambos elementos se ionizan, creando un puente conductor por el que circulan las cargas desde la punta metálica hacia la cinta.Las cargas negativas son atraídas hacia la superficie de la polea, pero en medio del camino se encuentra la cinta, y se depositan en su superficie, cancelando parcialmente la carga positiva de la polea. Pero la cinta se mueve hacia arriba, y el proceso comienza de nuevo.

martes, 29 de enero de 2013

glosario

glosario

Energía: El concepto de energía está relacionado con la capacidad de generar movimiento o lograr la transformación de algo. En el ámbito económico y tecnológico, la energía hace referencia a un recurso natural y los elementos asociados que permiten hacer un uso industrial del mismo.






Carga eléctrica: En física, la carga eléctrica es una propiedad intrínseca de algunas partículas subatómicas que se manifiesta mediante atracciones y repulsiones que determinan las interacciones electromagnéticas entre ellas. La materia cargada eléctricamente es influida por los campos electromagnéticos, siendo a su vez, generadora de ellos. La interacción entre carga y campo eléctrico origina una de las cuatro interacciones fundamentales: la interacción electromagnética. Desde el punto de vista del modelo estándar la carga eléctrica es una medida de la capacidad de la partícula para intercambiar fotones.



Culombio: La ley de Coulomb puede expresarse como: La magnitud de cada una de las fuerzas eléctricas con que interactúan dos cargas puntuales en reposo es directamente proporcional al producto de la magnitud de ambas cargas e inversamente proporcional al cuadrado de la distancia que las separa y tiene la dirección de la línea que las une. La fuerza es de repulsión si las cargas son de igual signo, y de atracción si son de signo contrario. La constante de proporcionalidad depende de la constante dieléctrica del medio en el que se encuentran las cargas.





Tales de Mileto: Es considerado por la tradición historiográfica occidental (desde Aristóteles2 en el siglo IV a. C. hasta historiadores como W. K. C. Guthrie3 o pensadores como B. Russell4 en el XX) como el iniciador de la indagación filosófico-científica acerca del cosmos (como un todo y también en aspectos particulares del mismo), distinguiéndose por ofrecer las primeras explicaciones registradas respecto de eventos naturales que no apelan a entidades divinas sino que se sustentan en observaciones e inferencias pasibles de ser constatadas y discutidas. Es señalado, entonces, como el primer gran impulsor en Grecia de la investigación cienctífica (en disciplinas como las matemáticas y la astronomía) y como el primer filósofo de la historia de la filosofía occidental, estando a él relacionados Anaximandro -quien habría sido su discípulo- y Anaxímenes -quien habría sido discípulo de este último-, denominándose tradicionalmente al conjunto de los tres como la "escuela jónica" o "de Mileto".
Nacido en la próspera ciudad de Mileto, en la Grecia jónica del Asia Menor, durante la década del 620 a. C, fue uno de los Siete Sabios de Grecia, reconocidos por su sabiduría práctica y por sus intervenciones políticas. Pero Tales también se destacó, a diferencia de ellos, por sus habilidades y conocimientos teóricos. Se interesó -y realizó importantes aportes- en cuestiones matemáticas, astronómicas, geográficas, físicas, metafísicas y de ingeniería, además de haber aconsejado exitosamente en varias ocasiones respecto de decisiones políticas no poco relevantes.




Generación: Se conoce como generación en genealogía al total de seres, que forman parte de la línea de sucesión anterior o posterior de un ser de referencia y se encuentran a la misma diferencia. Si se toma como partida un ser que se ha sometido a un test, o una generación del mismo, se denomina primera, segunda, etc. generación a las generaciones sucesoras. En las listas genealógicas es frecuente designar las generaciones con un número romano. Al margen de la genealogía se utiliza el término generación para denominar a las personas de una edad determinada o de un intervalo determinado de tiempo de la historia. También se utiliza el término para denominar a los productos técnicos de una serie de producción (o según el año de producción), copias a un lapso de tiempo idéntico al original y organismo con un determinado modo de reproducción.



Generador eléctrico: Un generador eléctrico es todo dispositivo capaz de mantener una diferencia de potencial eléctrica entre dos de sus puntos (llamados polos, terminales o bornes) transformando la energía mecánica en eléctrica. Esta transformación se consigue por la acción de un campo magnético sobre los conductores eléctricos dispuestos sobre una armadura (denominada también estator). Si se produce mecánicamente un movimiento relativo entre los conductores y el campo, se generará una fuerza electromotriz (F.E.M.). Este sistema está basado en la ley de Faraday.
Aunque la corriente generada es corriente alterna, puede ser rectificada para obtener una corriente continua. En el diagrama adjunto se observa la corriente inducida en un generador simple de una sola fase. La mayoría de los generadores de corriente alterna son de tres fases.



Diferencia de potencial: La tensión eléctrica o diferencia de potencial. Es una magnitud física que cuantifica la diferencia de potencial eléctrico entre dos puntos. También se puede definir como el trabajo por unidad de carga ejercido por el campo eléctrico sobre una partícula cargada para moverla entre dos posiciones determinadas. Se puede medir con un voltímetro.
La tensión es independiente del camino recorrido por la carga y depende exclusivamente del potencial eléctrico de los puntos A y B en el campo eléctrico, que es un campo conservativo.



Carga estática: se refiere a la acumulación de un exceso de carga eléctrica en una zona con poca conductividad eléctrica, un aislante, de manera que la acumulación de carga persiste. Los efectos de la electricidad estática son familiares para la mayoría de las personas porque pueden ver, notar e incluso llegar a sentir las chispas de las descargas que se producen cuando el exceso de carga del objeto cargado se pone cerca de un buen conductor eléctrico (como un conductor conectado a una toma de tierra) u otro objeto con un exceso de carga pero con la polaridad opuesta.
Física nuclear: La física nuclear es una rama de la física que estudia las propiedades y el comportamiento de los núcleos atómicos. La física nuclear es conocida mayoritariamente por la sociedad, por el aprovechamiento de la energía nuclear en centrales nucleares y en el desarrollo de armas nucleares, tanto de fisión como de fusión nuclear. En un contexto más amplio, se define la física nuclear y de partículas como la rama de la física que estudia la estructura fundamental de la materia y las interacciones entre las partículas subatómicas.




Átomo: El átomo es la unidad de materia más pequeña de un elemento químico que mantiene su identidad o sus propiedades, y que no es posible dividir mediante procesos químicos. Está compuesto por un núcleo atómico, en el que se concentra casi toda su masa, rodeado de una nube de electrones. El núcleo está formado por protones, con carga positiva, y neutrones, eléctricamente neutros. Los electrones, cargados negativamente, permanecen ligados a este mediante la fuerza electromagnética.
Los átomos se clasifican de acuerdo al número de protones y neutrones que contenga su núcleo. El número de protones o número atómico determina su elemento químico, y el número de neutrones determina su isótopo. Un átomo con el mismo número de protones que de electrones es eléctricamente neutro. Si por el contrario posee un exceso de protones o de electrones, su carga neta es positiva o negativa, y se denomina ion.




Electrones: Es una partícula subatómica con una carga eléctrica elemental negativa.12 Un electrón no tiene componentes o subestructura conocidos, en otras palabras, generalmente se define como una partícula elemental.2 Tiene una masa que es aproximadamente 1836 veces menor con respecto a la del protón.13 El momento angular (espín) intrínseco del electrón es un valor semientero en unidades de ħ, lo que significa que es un fermión. Su antipartícula es denominada positrón: es idéntica excepto por el hecho de que tiene cargas —entre ellas, la eléctrica— de signo opuesto. Cuando un electrón colisiona con un positrón, las dos partículas pueden resultar totalmente aniquiladas y producir fotones de rayos gamma.




Núcleo: Es la parte central de un átomo, tiene carga positiva, y concentra más del 99,9% de la masa total del átomo. Está formado por protones y neutrones (denominados nucleones) que se mantienen unidos por medio de la interacción nuclear fuerte, la cual permite que el núcleo sea estable, a pesar de que los protones se repelen entre sí (como los polos iguales de dos imanes). La cantidad de protones en el núcleo (número atómico), determina el elemento químico al que pertenece. Los núcleos atómicos no necesariamente tienen el mismo número de neutrones, ya que átomos de un mismo elemento pueden tener masas diferentes, es decir son isótopos del elemento. La existencia del núcleo atómico fue deducida del experimento de Rutherford, donde se bombardeó una lámina fina de oro con partículas alfa, que son núcleos atómicos de helio emitidos por rocas radiactivas. La mayoría de esas partículas traspasaban la lámina, pero algunas rebotaban, lo cual demostró la existencia de un minúsculo núcleo atómico.





Conductor eléctrico: Son materiales cuya resistencia al paso de la electricidad es muy baja. Los mejores conductores eléctricos son metales, como el cobre, el oro, el hierro y el aluminio, y sus aleaciones, aunque existen otros materiales no metálicos que también poseen la propiedad de conducir la electricidad, como el grafito o las disoluciones y soluciones salinas (por ejemplo, el agua de mar) o cualquier material en estado de plasma. Para el transporte de energía eléctrica, así como para cualquier instalación de uso doméstico o industrial, el mejor conductor es la plata, pero debido a su elevado precio, los materiales empleados habitualmente son el cobre (en forma de cables de uno o varios hilos), o el aluminio; metal que si bien tiene una conductividad eléctrica del orden del 60% de la del cobre, es sin embargo un material tres veces más ligero, por lo que su empleo está más indicado en líneas aéreas de transmisión de energía eléctrica en las redes de alta tensión.1 A diferencia de lo que mucha gente cree, el oro es levemente peor conductor que el cobre, sin embargo, se utiliza en bornes de baterías y conectores eléctricos debido a su durabilidad y “resistencia” a la corrosión.


Motores eléctricos: Un motor eléctrico es una máquina eléctrica que transforma energía eléctrica en energía mecánica por medio de campos electromagnéticos variables. Algunos de los motores eléctricos son reversibles, pueden transformar energía mecánica en energía eléctrica funcionando como generadores. Los motores eléctricos de tracción usados en locomotoras o en automóviles híbridos realizan a menudo ambas tareas, si se los equipa con frenos regenerativos. Son muy utilizados en instalaciones industriales, comerciales y particulares. Pueden funcionar conectados a una red de suministro eléctrico o a baterías. Así, en automóviles se están empezando a utilizar en vehículos híbridos para aprovechar las ventajas de ambos.




Triboeléctrica: El efecto triboeléctrico es un tipo de electrificación causado por el contacto con otro material (por ejemplo el frotamiento directo). La polaridad y la fuerza de las cargas producidas se diferencian según los materiales, la aspereza superficial, la temperatura, la tensión, y otras características. Se denomina triboelectricidad al fenómeno de electrificación por frotamiento. La electrostática, puede producirse por frotamiento o por influencia.





Polea: Una polea, es una máquina simple, un dispositivo mecánico de tracción, que sirve para transmitir una fuerza. Se trata de una rueda, roldana o disco, generalmente maciza y acanalada en su borde, que con el concurso de una cuerda o cable que se hace pasar por el canal ("garganta"), se usa como elemento de transmisión para cambiar la dirección del movimiento en máquinas y mecanismos. Además, formando conjuntos —aparejos o polipastos— sirve para reducir la magnitud de la fuerza necesaria para mover un peso. Según definición de Hatón de la Goupillière, «la polea es el punto de apoyo de una cuerda que moviéndose se arrolla sobre ella sin dar una vuelta completa» actuando en uno de sus extremos la resistencia y en otro la potencia.





Transmisión de movimiento por poleas: La transmisión de correas consiste en una correa flexible sin fin, que conecta dos ruedas o poleas. La transmisión de potencia depende de la fricción entre la superficie de las correas y la polea. El material más usado para correas es el cuero, bien una sola capa o más dé dos pegadas entre sí. En la mayoría de los casos la longitud se corta a la medida requerida. Y los extremos se unen con un enrejado hecho con tiras de cuero, o simplemente pegamento.




Ionización: La ionización es el fenómeno químico o físico mediante el cual se producen iones, estos son átomos o moléculas cargadas eléctricamente debido al exceso o falta de electrones respecto a un átomo o molécula neutro. A la especie química con más electrones que el átomo o molécula neutros se le llama anión, y posee una carga neta negativa, y a la que tiene menos electrones catión, teniendo una carga neta positiva. Hay varias maneras por las que se pueden formar iones de átomos o moléculas.



Capacitancia: Es la propiedad que tienen los cuerpos para mantener una carga eléctrica. La capacitancia también es una medida de la cantidad de energía eléctrica almacenada para un potencial eléctrico dado. El dispositivo más común que almacena energía de esta forma es el condensador.





 Campo eléctrico: El campo eléctrico es un campo físico que es representado mediante un modelo que describe la interacción entre cuerpos y sistemas con propiedades de naturaleza eléctrica.1 Matemáticamente se describe como un campo vectorial en el cual una carga eléctrica puntual de valor  sufre los efectos de una fuerza eléctrica.




Campo magnético: El magnetismo es uno de los aspectos del electromagnetismo, que es una de las fuerzas fundamentales de la naturaleza. Las fuerzas magnéticas son producidas por el movimiento de partículas cargadas, como por ejemplo electrones, lo que indica la estrecha relación entre la electricidad y el magnetismo. El marco que enlaza ambas fuerzas, es el tema de este curso, se denomina teoría electromagnética. La manifestación más conocida del magnetismo es la fuerza de atracción o repulsión que actúa entre los materiales magnéticos como el hierro. Sin embargo, en toda la materia se pueden observar efectos más sutiles del magnetismo. Recientemente, estos efectos han proporcionado claves importantes para comprender la estructura atómica de la materia.





Electroscopio: El electroscopio es un instrumento que se utiliza para establecer si un cuerpo está electrizado y el signo de su carga. El electroscopio sencillo consiste en una varilla metálica vertical que tiene una esfera en la parte superior y en el extremo opuesto dos láminas de oro o de aluminio muy delgadas. La varilla está sostenida en la parte superior de una caja de vidrio transparente con un armazón de cobre en contacto con tierra. Al acercar un objeto electrizado a la esfera, la varilla se electriza y las laminillas cargadas con igual signo de electricidad se repelen, separándose, siendo su divergencia una medida de la cantidad de carga que han recibido. La fuerza de repulsión electrostática se equilibra con el peso de las hojas. Si se aleja el objeto de la esfera, las láminas, al perder la polarización, vuelven a su posición normal.

Jaula de Faraday: El efecto jaula de Faraday provoca que el campo electromagnético en el interior de un conductor en equilibrio sea nulo, anulando el efecto de los campos externos. Esto se debe a que, cuando el conductor está sujeto a un campo electromagnético externo, se polariza, de manera que queda cargado positivamente en la dirección en que va el campo electromagnético, y cargado negativamente en el sentido contrario. Puesto que el conductor se ha polarizado, este genera un campo eléctrico igual en magnitud pero opuesto en sentido al campo electromagnético, luego la suma de ambos campos dentro del conductor será igual a 0. Se pone de manifiesto en numerosas situaciones cotidianas, por ejemplo, el mal funcionamiento de los teléfonos móviles en el interior de ascensores o edificios con estructura de rejilla de acero. Una manera de comprobarlo es con una radio sintonizada en una emisora de Onda Media. Al rodearla con un periódico, el sonido se escucha correctamente. Sin embargo, si se sustituye el periódico con un papel de aluminio la radio deja de emitir sonidos: el aluminio es un conductor eléctrico y provoca el efecto jaula de Faraday. Este fenómeno, descubierto por Michael Faraday, tiene una aplicación importante en aviones o en la protección de equipos electrónicos delicados, tales como repetidores de radio, discos duros y televisión situados en cumbres de montañas y expuestos a las perturbaciones electromagnéticas causadas por las tormentas.

taller y solucion del taller








taller y solución del taller


1 .Identificar las unidades para medir: carga eléctrica, voltios, corriente, resistencia, capacitancia, velocidad angular, torque, potencia eléctrica.
Carga eléctrica: Es una propiedad intrínseca de algunas partículas subatómicas que se manifiesta mediante atracciones y repulsiones que determinan las interacciones electromagnéticas entre ellas. La materia cargada eléctricamente es influida por los campos electromagnéticos, siendo a su vez, generadora de ellos. La interacción entre carga y campo eléctrico origina una de las cuatro interacciones fundamentales: la interacción electromagnética. Desde el punto de vista del modelo estándar la carga eléctrica es una medida de la capacidad de la partícula para intercambiar fotones.
Voltios: Es la unidad derivada del Sistema Internacional para el potencial eléctrico, la fuerza electromotriz y la tensión eléctrica. Recibe su nombre en honor a Alessandro Volta, quien en 1800 inventó la pila voltaica, la primera batería química. El voltio se define como la diferencia de potencial a lo largo de un conductor cuando una corriente de un amperio utiliza un vatio de potencia.
Corriente: Es el flujo de carga por unidad de tiempo que recorre un material. Se debe al movimiento de los electrones en el interior del material. En el Sistema Internacional de Unidades se expresa en C/s (culombios sobre segundo), unidad que se denomina amperio. Una corriente eléctrica, puesto que se trata de un movimiento de cargas, produce un campo magnético, un fenómeno que puede aprovecharse en el electroimán.
Resistencia eléctrica: Resistencia eléctrica es toda oposición que encuentra la corriente a su paso por un circuito eléctrico cerrado, atenuando o frenando el libre flujo de circulación de las cargas eléctricas o electrones. Cualquier dispositivo o consumidor conectado a un circuito eléctrico representa en sí una carga, resistencia u obstáculo para la circulación de la corriente eléctrica.
Capacitancia: Es la propiedad que tienen los cuerpos para mantener una carga eléctrica. La capacitancia también es una medida de la cantidad de energía eléctrica almacenada para un potencial eléctrico dado. El dispositivo más común que almacena energía de esta forma es el condensador.
Velocidad angular: es una medida de la velocidad de rotación. Se define como el ángulo girado por una unidad de tiempo y se designa mediante la letra griega ω. Su unidad en el Sistema Internacional es el radián por segundo (rad/s). Aunque se la define para el movimiento de rotación del sólido rígido, también se la emplea en la cinemática de la partícula o punto material, especialmente cuando esta se mueve sobre una trayectoria cerrada (circular, elíptica, etc.).
Torque: Es la tendencia de una fuerza para girar un objeto alrededor de un eje,  fulcro o pivote. Al igual que una fuerza es un empuje o un tirón, un par puede ser pensado como un toque a un objeto. Matemáticamente, el par se define como el producto vectorial de la distancia de brazo de palanca y la fuerza, que tiende a producir rotación. En términos generales, el par es una medida de la fuerza de giro sobre un objeto tal como un perno o un volante de inercia. Por ejemplo, empujar o tirar del mango de una llave conectado a una tuerca o perno produce un par (fuerza de giro) que afloja o aprieta la tuerca o el tornillo.
Potencia eléctrica: es la relación de paso de energía de un flujo por unidad de tiempo; es decir, la cantidad de energía entregada o absorbida por un elemento en un tiempo determinado. La unidad en el Sistema Internacional de Unidades es el vatio (watt).
Cuando una corriente eléctrica fluye en un circuito, puede transferir energía al hacer un trabajo mecánico o termodinámico. Los dispositivos convierten la energía eléctrica de muchas maneras útiles, como calor, luz (lámpara incandescente), movimiento (motor eléctrico), sonido (altavoz) o procesos químicos. La electricidad se puede producir mecánica o químicamente por la generación de energía eléctrica, o también por la transformación de la luz en las células fotoeléctricas. Por último, se puede almacenar químicamente en baterías.
2. Describir los instrumentos para medir las magnitudes anteriores.
Corriente eléctrica: El Voltímetro como la unidad de tensión, el Ohmímetro como la unidad de resistencia y los Multimetros como unidades de medición múltiples.
Voltios: Un voltímetro es un instrumento que sirve para medir la diferencia de potencial entre dos puntos de un circuito eléctrico.
Corriente: El instrumento usado para medir la intensidad de la corriente eléctrica es el galvanómetro que, calibrado en amperios, se llama amperímetro, colocado en serie con el conductor cuya intensidad se desea medir.
Resistencia eléctrica: Ohmímetro es un instrumento para medir la resistencia eléctrica.
Capacitancia: El capacímetro es un equipo de prueba electrónico utilizado para medir la capacidad o capacitancia de los condensadores. Dependiendo de la sofisticación del equipo, puede simplemente mostrar la capacidad o también puede medir una serie de parámetros tales como las fugas, la resistencia del dieléctrico o la componente inductiva.
Velocidad angular: El uso de giróscopos es muy común ya que pueden calcular la velocidad de rotación de un móvil en relación a los ejes x, y ó z.
Torque: El torque se mide en un dinamómetro que se encuentra en talleres especializados.
Potencia eléctrica: La potencia se mide con el vatímetro. Consiste en un instrumento que te mide la corriente y el voltaje y te hace la relación entre ellas para que resulte la potencia total.




3. Describir varias clases de motores de corriente continua y su funcionamiento. Adjuntar imágenes y videos de internet.
LOS MOTORES DE CORRIENTE DIRECTA PUEDEN SER DE TRES TIPOS:
SERIE
PARALELO
COMPOUND
MOTOR SERIE: es un tipo de motor eléctrico de corriente continua en el cual el devanado de campo (campo magnético principal) se conecta en serie con la armadura. Este devanado está hecho con un alambre grueso porque tendrá que soportar la corriente total de la armadura.
Debido a esto se produce un flujo magnético proporcional a la corriente de armadura (carga del motor). Cuando el motor tiene mucha carga, el campo de serie produce un campo magnético mucho mayor, lo cual permite un esfuerzo de torsión mucho mayor. Sin embargo, la velocidad de giro varía dependiendo del tipo de carga que se tenga (sin carga o con carga completa). Estos motores desarrollan un par de arranque muy elevado y pueden acelerar cargas pesadas rápidamente.
MOTOR SHUNT O MOTOR PARALELO: es un motor de corriente continua cuyo bobinado inductor principal está conectado en derivación con el circuito formado por los bobinados inducidos e inductor auxiliar. Al igual que en las dinamos shunt, las bobinas principales están constituidas por muchas espiras y con hilo de poca sección, por lo que la resistencia del bobinado inductor principal es muy grande.
MOTOR COMPOUND: es un motor de corriente continua cuya excitación es originada por dos bobinados inductores independientes; uno dispuesto en serie con el bobinado inducido y otro conectado en derivación con el circuito formado por los bobinados inducido, inductor serie e inductor auxiliar.
Los motores compuestos tienen un campo serie sobre el tope del bobinado del campo shunt. Este campo serie, el cual consiste de pocas vueltas de un alambre grueso, es conectado en serie con la armadura y lleva la corriente de armadura.
El flujo del campo serie varia directamente a medida que la corriente de armadura varía, y es directamente proporcional a la carga. El campo serie se conecta de manera tal que su flujo se añade al flujo del campo principal shunt. Los motores compound se conectan normalmente de esta manera y se denominan como compound acumulativo.
Esto provee una característica de velocidad que no es tan "dura" o plana como la del motor shunt, ni tan "suave" como la de un motor serie. Un motor compound tiene un limitado rango de debilitamiento de campo; la debilitación del campo puede resultar en exceder la máxima velocidad segura del motor sin carga. Los motores de corriente continua compound son algunas veces utilizados donde se requiera una respuesta estable de par constante para un rango de velocidades amplio.

LAS PARTES FUNDAMENTALES DE UN MOTOR DE CORRIENTE CONTINUA SON:
ESTATOR: Es el que crea el campo magnético fijo, al que le llamamos Excitación. En los motores pequeños se consigue con imanes permanentes. Cada vez se construyen imanes más potentes, y como consecuencia aparecen en el mercado motores de excitación permanente, mayores.

ROTOR: También llamado armadura. Lleva las bobinas cuyo campo crea, junto al del estator, el par de fuerzas que le hace girar.

ESCOBILLAS: Normalmente son dos tacos de grafito que hacen contacto con las bobinas del rotor. A medida que éste gira, la conexión se conmuta entre unas y otras bobinas, y debido a ello se producen chispas que generan calor. Las escobillas se fabrican normalmente de grafito, y su nombre se debe a que los primeros motores llevaban en su lugar unos paquetes hechos con alambres de cobre dispuestos de manera que al girar el rotor "barrían", como pequeñas escobas, la superficie sobre la que tenían que hacer contacto.

COLECTOR: Los contactos entre escobillas y bobinas del rotor se llevan a cabo intercalando una corona de cobre partida en sectores. El colector consta a su vez de dos partes básicas:

DELGAS: Son los sectores circulares, aislados entre sí, que tocan con las escobillas y a su vez están soldados a los extremos de los conductores que conforman las bobinas del rotor.
MICAS: Son láminas delgadas del mismo material, intercaladas entre las delgas de manera que el conjunto forma una masa compacta y mecánicamente robusta.

EXCITACIÓN
La forma de conectar las bobinas del estator es lo que se define como tipo de excitación. Podemos distinguir entre:
INDEPENDIENTE: Los devanados del estator se conectan totalmente por separado a una fuente de corriente continua, y el motor se comporta exactamente igual que el de imanes permanentes. En las aplicaciones industriales de los motores de C.C. es la configuración más extendida.
SERIE: Consiste en conectar el devanado del estator en serie con el de la armadura. Se emplea cuando se precisa un gran par de arranque, y precisamente se utiliza en los automóviles. Los motores con este tipo de excitación se embalan en ausencia de carga mecánica. Los motores con esta configuración funcionan también con corriente alterna.
PARALELO: Estator y rotor están conectados a la misma tensión, lo que permite un perfecto control sobre la velocidad y el par.
COMPOUND: Del inglés, compuesto, significa que parte del devanado de excitación se conecta en serie, y parte en paralelo. Las corrientes de cada sección pueden ser aditivas o sustractivas respecto a la del rotor, lo que da bastante juego, pero no es este el lugar para entrar en detalles al respecto.
VIDEOS

IMÁGENES